
Crypto Game Store
Unity In-App Purchasing with Direct Cryptocurrency Payments

Table of Contents

1. Overview
2. System Requirements
3. Getting Started
4. Installation and Setup
5. Wallet Configuration
6. Game Store Server Setup
7. Server Deployment
8. Client Integration
9. Product Configuration

10. Testing Your Store
11. Troubleshooting
12. Glossary

Overview

Crypto Game Store is a Unity asset that integrates with Unity's In-App Purchasing 5.0 system to enable direct
cryptocurrency payments from players to developers. This solution eliminates third-party app store and platform fees
by allowing customers to pay directly from their crypto wallets to your store's wallet.

Key Features

Direct payments: Receive payments directly from customers without intermediaries
Zero platform fees: Eliminate traditional app store commissions and fees
Blockchain security: All transactions are secured and verified on the Bitcoin blockchain
Unity IAP compatibility: Seamlessly integrates with existing Unity In-App Purchasing workflows
Flexible pricing: Support for both fiat currency (USD, EUR, JPY, ...) and cryptocurrency pricing
Real-time exchange rates: Automatic conversion between fiat and crypto currencies
Self-hosted solution: Complete control over your payment infrastructure
Comprehensive example: Takes guess work out of getting your store working

How It Works

The system consists of two main components:

1. Client-side Unity package: Integrates with your game and handles the payment interface
2. Game Store Server: A self-hosted application that manages wallet interactions

When a player makes a purchase, the Server generates a unique crypto address for the transaction, the client displays
payment details to the player, and monitors the blockchain for payment confirmation.

System Requirements

Unity Environment

Unity 6000.0 or higher
Unity In-App Purchasing 5.0
Unity Services (Authentication and Cloud Save)

Supported Platforms

Android clients
PC Windows clients

Server Environment

Windows x64 or Linux x64 or Linux amd64
Stable internet connection with 24/7 operation

Wallet Requirements

Your store can use one of two wallet types:

Watch-Only Wallet: Uses an XPUB from existing wallets (hardware or software)
Knots Wallet: Full Bitcoin node implementation for complete control

Getting Started

Implementation Steps

1. Install the Unity package from the Asset Store
2. Configure Unity Services for your project
3. Choose your wallet type (Watch-Only or Knots)
4. Set up the Game Store Server with your configuration
5. Deploy and run the server on your hosting environment
6. Integrate the client code into your game
7. Define your store products and pricing
8. Test the complete system before production deployment

Prerequisites

Before beginning, ensure you have:

A Unity project with Services enabled
A Bitcoin wallet or plan to set up a Knots node

A server environment for hosting the Game Store Server
Basic understanding of Unity's In-App Purchasing system

Installation and Setup

1. Install Crypto Game Store Package

The Crypto Game Store package is distributed in two parts:

1. Unity Package: Available from the Unity Asset Store (CryptoGameStore.unitypackage)

Import using Unity's Package Manager
Automatically installs required dependencies

2. Game Store Server: Downloaded separately due to Unity Asset Store restrictions (Download links below)

2. Configure Unity Services

Crypto Game Store requires two Unity Services:

In-App Purchasing Setup

1. Navigate to Services → In-App Purchasing → Configure...
2. Follow the setup wizard to enable In-App Purchasing
3. This automatically configures Authentication and Cloud Save services

Wallet Configuration

Understanding Wallet Types

Crypto Game Store supports two wallet configurations, each with distinct advantages:

Watch-Only Wallet

A Watch-Only wallet uses an Extended Public Key (XPUB) from an existing wallet to generate deposit only addresses
without exposing your wallet's private keys.

Advantages:

Security: Private keys remain with your primary wallet
Simplicity: Quick setup with existing wallet infrastructure
Flexibility: Compatible with many wallet types and platforms

Supported Wallets:

Category Wallets Platforms Testnet XPUB Export Method

Custodial Coinbase Web No
Settings → Export Account →
Extended Public Key

Kraken Web No
API → Deposit Addresses →
Export XPUB (business accounts)

Bitstamp Web No
Account → API Keys → enable
Read-only → XPUB via support

Gemini Web No Account Details → Export XPUB

Non-
Custodial

Knots Windows Yes
Window → Console → run
command: listdescriptors

Sparrow Windows Yes
Wallet → panel Settings →
Keystores → xpub:

Wasabi Windows Yes
3-dot menut → Wallet Info →
Extended Account Public Key

Electrum Windows / Android
Yes /
No

Not supported

Blockstream Windows / Android
Yes /
Yes

Not supported

Mycelium Android Yes 3-dot menu → Export acount keys

Muun Android No Not supported

Edge Android Yes
3-dot menu → View XPub
Address

Bitpay Android Yes Not supported

BlueWallet Android No 3-dot menu → Show Wallet XPUB

Hardware
Blockstream Jade
/ Jade+

Blcokstream / Sparrow /
Electrum / Knots / ...

Yes Options → Wallet → Export Xpub

Coldcard Mk4 / Q
Wasabi / Sparrow /
Electrum / Knots / ...

Yes
Advanced → Export Wallet →
Export XPUB (creates xpub.txt)

Trezor One /
Model T

Trezor Suite Yes
Accounts → three-dot menu →
Export XPUB

Note: This list is not exhaustive. Hardware wallets can also be used with certain non-custodial apps. Consult your
wallet's current documentation for specific XPUB export procedures.

Knots Wallet

Bitcoin Knots is a full node implementation that provides complete Bitcoin protocol validation and wallet
functionality.

Advantages:

Full control: Complete sovereignty over your Bitcoin operations
Network participation: Contribute to Bitcoin network security
Direct validation: Verify all transactions against the blockchain
Hot wallet capability: Can both receive and spend funds

Setup Requirements:

1. Download Bitcoin Knots from bitcoinknots.org
2. Install using default directories for easier integration
3. Use default configuration settings
4. Enable RPC Server: Settings → Options → RPC Server
5. Create a wallet through the Knots interface

Installation Resources:

Bitcoin Knots Setup Guide
Advanced Configuration

Note: Installing Knots in default locations simplifies Game Store Server integration.

Game Store Server Setup

The Game Store Server configuration is managed through Unity's built-in interface.

Accessing Configuration

1. Navigate to Windows → Crypto Game Store Server in Unity
2. This opens the configuration dialog for server setup

https://bitcoinknots.org/#download
https://www.youtube.com/watch?v=zT4NuAaH3EM
https://www.youtube.com/watch?v=9JKpA7gqbW0

Configuration Parameters

Network Selection

Use Test Network: Enable for testing with testnet4 (no real Bitcoin required)
Use Main Network: Disable for production with real Bitcoin

Default: Test Network enabled for safe initial testing

Project Identification

Project ID

Location: Project Settings → Services or Unity Cloud → Projects → Settings
Purpose: Ensures only your game can communicate with your server
Format: Unique identifier for your Unity project

Environment ID

Location: Project Settings → Services → Environments or Unity Cloud → Projects → Environments
Purpose: Isolates different deployment environments (development, staging, production)
Default: "production" environment
Note: Use actual Environment ID from Unity Cloud, not display name shown in Unity Editor

Unity Services Authentication

The Game Store Server requires Unity Cloud Save API access through Service Account keys.

Creating Service Account Keys:

1. Navigate to Unity Cloud → Administration → Service Accounts
2. Create a new service account (if none exist)
3. Select the account and click +Add Key
4. Copy the Key ID to Api Key field
5. Copy the Secret Key to Api Secret field
6. Save the Secret Key securely (it won't be shown again)

Setting Permissions:

1. Click +Manage Project Roles
2. Select your game's project
3. Under "Live Ops", choose Cloud Save Editor
4. Click Save

Optional Settings

Bitcoin Character Output

Displays a Bitcoin symbol (₿) when dispensing payment addresses
Purely informational, does not affect functionality

Wallet-Specific Configuration

Watch-Only Wallet Setup

Public Key (XPUB)

Enter the XPUB exported from your chosen wallet
Ensure network type (Main/Test) matches your "Use Test Network" setting
The system will warn about network mismatches when saving

Knots Wallet Setup

The Game Store Server auto-configures for Knots installations in default locations.

Optional Settings:

Address Label

Custom label added to Knots wallet addresses
Helps identify Game Store transactions in Knots wallet's transaction log
Distinguishes from other wallet uses

Show Startup Logs

Enables diagnostic output for Knots startup issues
Useful for troubleshooting configuration problems

Saving Configuration

1. Click Save Configuration to create a configuration file
2. The file GameStoreServer.config is saved to Assets/GameStore/

3. Windows Explorer opens and highlights the saved file
4. Move this file to your Game Store Server application directory

Security Considerations

Data Protection:

Api Secret and Public Key values are encrypted in the configuration file
These values are erased from the file after first server startup
Store these values securely outside the configuration system
Avoid committing GameStoreServer.config to source control

Server Deployment

Server Application

The Game Store Server is a self-contained executable with no external dependencies except the configuration file. The
server comes in operating system and CPU variations to support Windows x64, Linux x64, and Linux arm64. You can
download the appropriate server for your platform from our web stie at AnarchyWerks.com.

Deployment Steps

1. Download the appropriate server application for your platform
2. Place the server application in your chosen directory
3. On Linux: GameStoreServer (requires execute permission: chmod +x GameStoreServer)
4. Copy GameStoreServer.config from Assets/GameStore/ to the same directory
5. Run the server application

Server Operation

Console Output

Windows Example:

Linux Example:

Server Locking

The Game Store Server implements an exclusive locking mechanism:

Only one server instance per Project ID + Environment ID combination
Prevents conflicting server instances
Failed startup displays lock status
Automatic recovery after 2 minutes if original instance becomes unreachable

https://anarchywerks.com/

Production Deployment

For production environments:

Requirements

24 / 7 uptime: Continuous internet connectivity
Automatic startup: Configure server to start with system boot
Monitoring: Implement logging and health checks
Security: Secure server environment and network access

Automation Setup

Configure automatic server startup using platform-specific methods:

Windows: Windows Service, Task Scheduler, or Startup folder
Linux: systemd service, init scripts, or cron jobs

Client Integration

Unity In-App Purchasing Integration

Crypto Game Store integrates seamlessly with Unity's In-App Purchasing 5.0 API, requiring minimal code changes
from standard IAP implementations.

Purchase Flow Overview

1. Product Definition: Game defines products for sale
2. Player Selection: Player chooses item to purchase
3. Purchase Initiation: Game calls Unity IAP purchase method
4. Payment Dialog: Crypto Game Store displays payment interface
5. Player Confirmation: Player confirms and completes payment
6. Pending Status: Game receives pending payment notification
7. Blockchain Monitoring: System monitors for payment confirmation
8. Confirmation: Game receives successful payment notification
9. Receipt Verification: Game verifies transaction receipt

Crypto Game Store API

The integration requires only one Crypto Game Store-specific method:

public static string GameStore.CreateGameStore(ILogger logger = null, bool
logProductDetails = false)

Usage:

string storeName = GameStore.CreateGameStore();
UnityIAPService.StoreController(storeName);

Parameters:

logger : Optional logging interface for debugging
logProductDetails : Enable detailed product information logging

Payment Dialog Integration

Required Prefab

Include Assets/GameStore/Prefabs/GameStorePaymentDialog.prefab in every scene that processes purchases. Selecting
this prefab within the Unity Inspector window will allow some Optional Elements to be customized for the UI

Dialog Customization

Style Location: Assets/GameStore/Resources/GameStorePaymentDialog.uxml

Customization: Modify inline styles or add USS class references
Restrictions: Do not modify VisualElement IDs or non-style properties

Dialog Features

Information Display:

Cryptocurrency type (currently Bitcoin only)
Crypto amount to be charged
Item price in store specified currency
Real-time exchange rate
Currency conversion details
Unique payment address

User Actions:

Open Wallet: Launches compatible wallet applications for platform
Copy Address: Copies payment address to clipboard
QR Code: Displays QR code to scan from wallets
Timer: Shows validity period for payment quote

Optional Elements:

Title: Customizable dialog title
Payment Label: Transaction note for player's wallet

These example show 1) priced in U.S. dollars, 2) priced in bitcoin, 3) priced in Japan Yen, 4) Price in Euro with a custom
title and UXML inline-style applied.

Unity Services Integration

Prerequisites

Ensure Unity Services initialization and player authentication before using Crypto Game Store:

// Initialize Unity Services
await UnityServices.InitializeAsync();

// Authenticate player
await AuthenticationService.Instance.SignInAnonymouslyAsync();

Helper Class

The included UsgHelp.cs class provides utilities for Unity Services setup and authentication.

Example Implementation

A complete example is provided at Assets/GameStore/Examples/ExampleCryptoGameStoreClient.cs :

Demonstrates full integration workflow
Includes extensive documentation
Shows best practices for error handling
Provides debugging and logging examples

Product Configuration

Unity IAP Catalog Integration

Crypto Game Store uses Unity's standard product definition system with specific adaptations for cryptocurrency
pricing.

Required Product Information

For each store item, define:

1. ID: Unique string identifier
2. Type: Consumable, Non-consumable, or Subscription (not currently support)
3. Price: Numerical price value
4. Currency ISO: Price's 3 letter currency code (USD, EUR, JPY, BTC, etc.)

Configuration Methods

Method 1: IAP Catalog (Recommended)

1. Navigate to Services → In-App Purchasing → IAP Catalog...
2. Add products with the following mappings:

ID → Catalog item ID
Title → Catalog item Title
Description → Catalog item Description
Price → Google Configuration: Price
Currency ISO → Google Configuration: Pricing Template

Method 2: Runtime PayoutDefinition

For dynamic product configuration use PayoutDefinition :

var productDefinition = new ProductDefinition(
 id: "item_001",
 type: ProductType.Consumable,
 payouts: new[]
 {
 new PayoutDefinition(
 type: PayoutType.Currency,
 subtype: "USD",
 quantity: 9.99m
)
 }
);

PayoutDefinition field mappings:

Price → quantity field

Currency ISO → subtype field
Insure type is set to PayoutType.Currency

Pricing Best Practices

1. Consistency: Use a single currency across all your store items when possible
2. Clarity: Clearly indicate currency to players
3. Exchange Rates: Account for real-time rate fluctuations
4. Testing: Verify pricing accuracy in test environment

Catalog File Location

Unity saves the IAP Catalog to Assets/Resources/IAPProductCatalog.json . Keep this file in the default location for
proper IAP Catalog window functionality.

Bitcoin Configuration

Confirmations

The bitcoin network secures your store's purchases by adding them to its blockchain. The longer you wait after
adding a purchase to the blockchain, the more secure that purchase will be.

By default, Crypto Game Store wait for one security cycle, a single confirmation, to occur before reporting to your
store that a purchase is complete. This should be sufficient for purchases under $100 or thereabouts. If you store sells
items for amounts larger than this, you may want to consider increasing the number of confirmations needed to
report a purchase complete.

You can use change the confirmations waited in the Unity Inspector of the BTC Network Provider using the
Confirmation For Paid setting. On average each confirmation will take approximately 10 minutes.

Testing Your Store

Test Network Setup

Use Bitcoin's testnet4 for safe testing without real Bitcoin:

1. Configure Server: Enable "Use Test Network" in Game Store Server configuration
2. Wallet Configuration:

Knots: Automatically uses testnet4 when enabled in Game Store Server configuration
Watch-Only: Export testnet4 XPUB (starts with "tpub..." or "vpub...")

3. Save and Restart: Apply test configuration to server

Obtaining Test Bitcoin

Testnet4 Faucets

Request free testnet4 Bitcoin from these faucets:

mempool.space testnet4 faucet

https://mempool.space/testnet4/faucet

coinfaucet.eu testnet4

Testnet4 Address Format

Testnet4 addresses begin with "tb1..." prefix.

Testing Considerations

Transaction Time: Testnet4 transactions may take 1+ hours to confirm (vs 10 minutes on mainnet)
Network Reliability: Test network may experience longer delays

Development Testing Features

Since testnet4 is often considerably slower than mainnet, fake confirmation can be sent for rapid development

testing:

1. Navigate to Assets/GameStore/Resources/PaymentNetworks/BtcNetworkProvider

2. Enable Fake Confirmations option
3. Behavior: Generates fake confirmation 30 seconds after a transaction starts
4. Limitations:

Only works with DEBUG builds
Only works on testnet4 network
Bypasses actual blockchain monitoring

5. Features:
Fake Adjustment: Test over/under payment scenarios. 0 = pay exact invoice amount; -1 = under pay invoice
by 10%; 1 = over pay invoice by 10%
Status: Simulate success/failure conditions

Production Testing Checklist

Before deploying to mainnet:

1. Test Network Validation: Complete testing on testnet4

https://coinfaucet.eu/en/btc-testnet4/

2. Server Configuration: Verify mainnet wallet configuration
3. Exchange Rates: Confirm real-time price feeds
4. Security Review: Validate server and wallet security
5. Backup Procedures: Ensure wallet backup and recovery processes
6. Monitoring Setup: Implement production monitoring and alerting

Troubleshooting

"Cannot contact store; retry later"

Possible Causes:

Game Store Server is not running
Project ID mismatch between server and game
Environment ID mismatch between server and game
Network connectivity issues

Resolution Steps:

1. Verify server is running and accessible
2. Confirm Project ID matches in both server config and game
3. Verify Environment ID of server matches editor or built game environment (found in Editor Project Setting →

Services → Environments → Environment)
4. Check network connectivity and firewall settings

Server Startup AuthorizationException

Possible Causes:

Incorrect Project ID in server configuration
Service Account keys don't match selected project
Insufficient Service Account permissions

Resolution Steps:

1. Verify Project ID matches the project used for Service Account creation
2. Confirm Service Account has "Cloud Save Editor" role
3. Regenerate Service Account keys if necessary
4. Verify API Key and Secret are correctly entered

Wallet Configuration Issues

Watch-Only Wallet:

Verify XPUB format matches network type (mainnet vs. testnet4)
Confirm XPUB is valid and properly exported
Check wallet software documentation for export procedures

Knots Wallet:

Verify Knots installation in default directory
Confirm RPC server is enabled in Knots settings
Check Knots wallet creation and configuration
Review Knots logs for startup errors

Payment Processing Problems

Transaction Not Detected:

Verify payment sent to correct address
Check sufficient network confirmations
Confirm correct network (mainnet vs. testnet4)
Review blockchain explorer for transaction status

Incorrect Payment Amount:

Verify exchange rate calculation
Check for network fee deductions
Confirm payment precision and rounding

Debugging Tools

Server Logging

Enable verbose logging in Game Store Server for detailed operation information.
Monitor Unity console for Crypto Game Store debug messages and errors.
Monitor Game Store Server console for errors.

Blockchain Explorers

Mainnet: blockstream.info
Testnet4: mempool.space/testnet4

Support Resources

Exchange Rate Information

Real-time cryptocurrency prices provided by CoinGecko.

Additional Documentation

Unity In-App Purchasing documentation
Bitcoin Knots setup guides
Wallet-specific XPUB export guides

https://blockstream.info/
https://mempool.space/testnet4
https://www.coingecko.com/

Glossary

Blockchain Terms

Bitcoin (BTC) : The first and most widely used cryptocurrency, operating on a decentralized blockchain network.

Blockchain : A distributed ledger technology that records transactions across multiple computers in a tamper-
resistant manner.

Confirmations : The number of blocks mined on the blockchain after a purchase's block, indicating increasing security
and finality.

Faucet : A website that distributes small amounts of test cryptocurrency for development and testing purposes.

Mainnet : The primary Bitcoin network where transactions use real Bitcoin with monetary value.

Private Key : A cryptographic key that allows spending of Bitcoin from a wallet address. Must be kept secret and
secure.

Public Key : A cryptographic key derived from a private key that can be shared publicly without compromising wallet
security.

Testnet4 : Bitcoin's test network for development and testing, using test Bitcoin with no monetary value.

Transaction Fee : A fee paid to Bitcoin miners for including a transaction in a block.

Wallet Terms

Extended Public Key (XPUB) : A public key that can generate multiple Bitcoin addresses for receiving funds without
exposing private keys.

Hardware Wallet : A physical device that stores private keys offline for enhanced security.

Hot Wallet : A wallet connected to the internet, allowing both sending and receiving of cryptocurrency.

Knots : A Bitcoin full node implementation that validates transactions and maintains the blockchain.

Non-Custodial Wallet : A wallet where the user controls their own private keys.

QR Code : A matrix barcode containing payment information that can be scanned by mobile wallet applications.

Watch-Only Wallet : A wallet that can monitor addresses and generate receiving addresses but cannot spend funds.

Unity and Development Terms

Environment ID : A Unity Services identifier that separates different deployment environments (development, staging,
production).

In-App Purchasing (IAP) : Unity's system for handling purchases within games and applications.

Project ID : A unique identifier for a Unity project within Unity Services.

Service Account : A special account used for server-to-server communication with Unity Services APIs.

Unity Services : Cloud-based services provided by Unity, including Authentication, Cloud Save, and Analytics.

Crypto Game Store Terms

Fake Confirmations : A development feature that simulates transaction confirmations for testing without waiting for
blockchain confirmation.

Game Store Server : The self-hosted server component that manages wallet interactions.

Payment Address : A unique Bitcoin address generated for each transaction to receive customer payments.

Payout Definition : A Unity IAP structure defining the currency and amount for a product purchase.

Server Locking : A mechanism preventing multiple Game Store Server instances from running with the same
configuration simultaneously.

This documentation covers the complete setup and operation of the Crypto Game Store system. For additional support or
updates, refer to the latest version of this documentation and the provided example implementations.

