Crypto Game Store

Unity In-App Purchasing with Direct Cryptocurrency Payments

Table of Contents

. Overview

. System Requirements

. Getting Started

. Installation and Setup

. Wallet Configuration

. Game Store Server Setup
. Server Deployment

. Client Integration

. Product Configuration

O W 00 N O Ul A W N =

—_

. Testing Your Store

—_
—_

. Troubleshooting

12. Glossary

Overview

Crypto Game Store is a Unity asset that integrates with Unity's In-App Purchasing 5.0 system to enable direct
cryptocurrency payments from players to developers. This solution eliminates third-party app store and platform fees
by allowing customers to pay directly from their crypto wallets to your store's wallet.

Key Features

e Direct payments: Receive payments directly from customers without intermediaries

e Zero platform fees: Eliminate traditional app store commissions and fees

e Blockchain security: All transactions are secured and verified on the Bitcoin blockchain

e Unity IAP compatibility: Seamlessly integrates with existing Unity In-App Purchasing workflows
e Flexible pricing: Support for both fiat currency (USD, EUR, JPY, ...) and cryptocurrency pricing

e Real-time exchange rates: Automatic conversion between fiat and crypto currencies

o Self-hosted solution: Complete control over your payment infrastructure

e Comprehensive example: Takes guess work out of getting your store working

How It Works
The system consists of two main components:

1. Client-side Unity package: Integrates with your game and handles the payment interface

2. Game Store Server: A self-hosted application that manages wallet interactions

When a player makes a purchase, the Server generates a unique crypto address for the transaction, the client displays
payment details to the player, and monitors the blockchain for payment confirmation.

System Requirements

Unity Environment

e Unity 6000.0 or higher

e Unity In-App Purchasing 5.0

e Unity Services (Authentication and Cloud Save)
Supported Platforms

e Android clients

e PC Windows clients
Server Environment

e Windows x64 or Linux x64 or Linux amd64

e Stable internet connection with 24/7 operation
Wallet Requirements
Your store can use one of two wallet types:

e Watch-Only Wallet: Uses an XPUB from existing wallets (hardware or software)

e Knots Wallet: Full Bitcoin node implementation for complete control

Getting Started

Implementation Steps

1. Install the Unity package from the Asset Store
. Configure Unity Services for your project
. Choose your wallet type (Watch-Only or Knots)

. Set up the Game Store Server with your configuration

. Integrate the client code into your game

2
3
4
5. Deploy and run the server on your hosting environment
6
7. Define your store products and pricing

8

. Test the complete system before production deployment

Prerequisites

Before beginning, ensure you have:

e A Unity project with Services enabled

e A Bitcoin wallet or plan to set up a Knots node

e A server environment for hosting the Game Store Server

e Basic understanding of Unity's In-App Purchasing system

Installation and Setup

1. Install Crypto Game Store Package
The Crypto Game Store package is distributed in two parts:
1. Unity Package: Available from the Unity Asset Store (CryptoGameStore.unitypackage)

o Import using Unity's Package Manager

o Automatically installs required dependencies

2. Game Store Server: Downloaded separately due to Unity Asset Store restrictions (Download links below)

2. Configure Unity Services

Crypto Game Store requires two Unity Services:

In-App Purchasing Setup

1. Navigate to Services — In-App Purchasing — Configure...
2. Follow the setup wizard to enable In-App Purchasing

3. This automatically configures Authentication and Cloud Save services

: In-App Purchases

pud project or craating a new one

3. Select a clowd project to use for this Unity project

Wallet Configuration

Understanding Wallet Types

Crypto Game Store supports two wallet configurations, each with distinct advantages:

Watch-Only Wallet

A Watch-Only wallet uses an Extended Public Key (XPUB) from an existing wallet to generate deposit only addresses
without exposing your wallet's private keys.

Advantages:

e Security: Private keys remain with your primary wallet
e Simplicity: Quick setup with existing wallet infrastructure

e Flexibility: Compatible with many wallet types and platforms

Supported Wallets:

Category

Custodial

Non-
Custodial

Hardware

Wallets

Coinbase

Kraken

Bitstamp

Gemini

Knots

Sparrow

Wasabi

Electrum

Blockstream

Mycelium

Muun

Edge

Bitpay

BlueWallet

Blockstream Jade

/ Jade+

Coldcard Mk4 / Q

Trezor One /
Model T

Platforms
Web
Web
Web
Web
Windows
Windows
Windows

Windows / Android

Windows / Android

Android

Android

Android

Android
Android

Blcokstream / Sparrow /
Electrum / Knots / ...

Wasabi / Sparrow /
Electrum / Knots / ...

Trezor Suite

Testnet

No

No

No

No

Yes

Yes

Yes

Yes /
No

Yes /
Yes

Yes

No

Yes

Yes

No

Yes

Yes

Yes

XPUB Export Method

Settings — Export Account —
Extended Public Key

AP| — Deposit Addresses —
Export XPUB (business accounts)

Account — API Keys — enable
Read-only — XPUB via support

Account Details — Export XPUB

Window — Console — run
command: listdescriptors

Wallet — panel Settings —
Keystores — xpub:

3-dot menut —» Wallet Info —

Extended Account Public Key

Not supported

Not supported

3-dot menu — Export acount keys
Not supported

3-dot menu — View XPub
Address

Not supported

3-dot menu — Show Wallet XPUB

Options — Wallet — Export Xpub

Advanced — Export Wallet —
Export XPUB (creates xpub.txt)

Accounts — three-dot menu —
Export XPUB

Note: This list is not exhaustive. Hardware wallets can also be used with certain non-custodial apps. Consult your

wallet's current documentation for specific XPUB export procedures.

Knots Wallet

Bitcoin Knots is a full node implementation that provides complete Bitcoin protocol validation and wallet
functionality.

Advantages:

Full control: Complete sovereignty over your Bitcoin operations

Network participation: Contribute to Bitcoin network security

Direct validation: Verify all transactions against the blockchain

Hot wallet capability: Can both receive and spend funds

Setup Requirements:

1. Download Bitcoin Knots from bitcoinknots.org

2. Install using default directories for easier integration
3. Use default configuration settings

4. Enable RPC Server: Settings — Options — RPC Server
5. Create a wallet through the Knots interface

Installation Resources:

e Bitcoin Knots Setup Guide

¢ Advanced Configuration

Note: Installing Knots in default locations simplifies Game Store Server integration.
Game Store Server Setup
The Game Store Server configuration is managed through Unity's built-in interface.

Accessing Configuration

1. Navigate to Windows — Crypto Game Store Server in Unity

2. This opens the configuration dialog for server setup

Watch Only

Save Configuration

https://bitcoinknots.org/#download
https://www.youtube.com/watch?v=zT4NuAaH3EM
https://www.youtube.com/watch?v=9JKpA7gqbW0

Configuration Parameters

Network Selection

e Use Test Network: Enable for testing with testnet4 (no real Bitcoin required)

e Use Main Network: Disable for production with real Bitcoin

Default: Test Network enabled for safe initial testing

Project Identification

Project ID

e Location: Project Settings — Services or Unity Cloud — Projects — Settings
e Purpose: Ensures only your game can communicate with your server

e Format: Unique identifier for your Unity project

Environment ID

Location: Project Settings — Services — Environments or Unity Cloud — Projects — Environments

Purpose: Isolates different deployment environments (development, staging, production)

Default: "production” environment

Note: Use actual Environment ID from Unity Cloud, not display name shown in Unity Editor

Unity Services Authentication
The Game Store Server requires Unity Cloud Save APl access through Service Account keys.
Creating Service Account Keys:

1. Navigate to Unity Cloud — Administration — Service Accounts
2. Create a new service account (if none exist)

3. Select the account and click +Add Key

4. Copy the Key ID to Api Key field

5. Copy the Secret Key to Api Secret field

6. Save the Secret Key securely (it won't be shown again)
Setting Permissions:

1. Click +Manage Project Roles

2. Select your game's project

3. Under "“Live Ops", choose Cloud Save Editor
4. Click Save

Optional Settings

Bitcoin Character Output

e Displays a Bitcoin symbol (B) when dispensing payment addresses

e Purely informational, does not affect functionality

Wallet-Specific Configuration
Watch-Only Wallet Setup
Public Key (XPUB)

e Enter the XPUB exported from your chosen wallet
e Ensure network type (Main/Test) matches your "Use Test Network" setting

e The system will warn about network mismatches when saving

Knots Wallet Setup

Save Configuration

The Game Store Server auto-configures for Knots installations in default locations.
Optional Settings:
Address Label

e Custom label added to Knots wallet addresses
¢ Helps identify Game Store transactions in Knots wallet's transaction log

e Distinguishes from other wallet uses
Show Startup Logs
e Enables diagnostic output for Knots startup issues
e Useful for troubleshooting configuration problems
Saving Configuration

1. Click Save Configuration to create a configuration file
2. The file GameStoreServer.config is saved to Assets/GameStore/
3. Windows Explorer opens and highlights the saved file

4. Move this file to your Game Store Server application directory

Security Considerations

Data Protection:

Api Secret and Public Key values are encrypted in the configuration file

These values are erased from the file after first server startup

Store these values securely outside the configuration system

Avoid committing GameStoreServer.config to source control

Server Deployment

Server Application

The Game Store Server is a self-contained executable with no external dependencies except the configuration file. The
server comes in operating system and CPU variations to support Windows x64, Linux x64, and Linux arm64. You can
download the appropriate server for your platform from our web stie at AnarchyWerks.com.

Deployment Steps

1. Download the appropriate server application for your platform

2. Place the server application in your chosen directory

3. On Linux: GameStoreServer (requires execute permission: chmod +x GameStoreServer)
4. Copy GameStoreServer.config from Assets/GameStore/ to the same directory

5. Run the server application

Server Operation

Console Output

Windows Example:

O C\Dev\CryptoGameStore\GameStoreServeriwin-x64\GameStoreServer.exe

ame Store Se

esthletd from - tech-only-btc-wallet-testnetd 122

o4 11:4

Server Locking

The Game Store Server implements an exclusive locking mechanism:

e Only one server instance per Project ID + Environment ID combination
e Prevents conflicting server instances
e Failed startup displays lock status

e Automatic recovery after 2 minutes if original instance becomes unreachable

https://anarchywerks.com/

m ChDe\CryptoGameStore\GameStoreSenver\win-xod\ GameStoreSener.exe

:.:.L._

Production Deployment

For production environments:

Requirements

24 / 7 uptime: Continuous internet connectivity

Automatic startup: Configure server to start with system boot

Monitoring: Implement logging and health checks

Security: Secure server environment and network access

Automation Setup
Configure automatic server startup using platform-specific methods:

e Windows: Windows Service, Task Scheduler, or Startup folder

e Linux: systemd service, init scripts, or cron jobs

Client Integration

Unity In-App Purchasing Integration

Crypto Game Store integrates seamlessly with Unity's In-App Purchasing 5.0 API, requiring minimal code changes
from standard IAP implementations.

Purchase Flow Overview

1. Product Definition: Game defines products for sale

. Player Selection: Player chooses item to purchase

. Purchase Initiation: Game calls Unity IAP purchase method

. Payment Dialog: Crypto Game Store displays payment interface

. Player Confirmation: Player confirms and completes payment

. Pending Status: Game receives pending payment notification

. Blockchain Monitoring: System monitors for payment confirmation

. Confirmation: Game receives successful payment notification

© 00 N oo U A W N

. Receipt Verification: Game verifies transaction receipt

Crypto Game Store API

The integration requires only one Crypto Game Store-specific method:

public static string GameStore.CreateGameStore(ILogger logger = null, bool
logProductDetails = false)

Usage:

string storeName = GameStore.CreateGameStore();
UnityIAPService.StoreController(storeName);

Parameters:

e logger : Optional logging interface for debugging

e logProductDetails : Enable detailed product information logging

Payment Dialog Integration

Required Prefab

Include Assets/GameStore/Prefabs/GameStorePaymentDialog.prefab in every scene that processes purchases. Selecting
this prefab within the Unity Inspector window will allow some Optional Elements to be customized for the Ul

Dialog Customization

e Style Location: Assets/GameStore/Resources/GameStorePaymentDialog.uxml
e Customization: Modify inline styles or add USS class references

e Restrictions: Do not modify VisualElement IDs or non-style properties

Dialog Features

Information Display:

e Cryptocurrency type (currently Bitcoin only)
e Crypto amount to be charged

e Item price in store specified currency

e Real-time exchange rate

e Currency conversion details

e Unique payment address
User Actions:

e Open Wallet: Launches compatible wallet applications for platform
e Copy Address: Copies payment address to clipboard
e QR Code: Displays QR code to scan from wallets

e Timer: Shows validity period for payment quote

Optional Elements:

o Title: Customizable dialog title

e Payment Label: Transaction note for player's wallet

These example show 1) priced in U.S. dollars, 2) priced in bitcoin, 3) priced in Japan Yen, 4) Price in Euro with a custom
title and UXML inline-style applied.

r A
Pay with Bitcoin (BTC) v
80.0000136
Total Fiat s1.50usp) 7 g
Exchange Rate B1=$110,271.00 Pay with Bitcoin (BTC) 4
Total Price g0.000013687c) | 80.00002662
Payment Address Payment Address
tb1gjvazs0tOtgsmkyazdk... xvxn tb1gl9Istt7q3rs2nldeyr.. n2a7

h A .

Pay with Bitcoin (BTC) v

B0.00005981 £0.00004198

Total Fiat ¥1,000(JPY) 4,00 € (EUR)
Exchange Rate B1= ¥16,719,624 B1=95.286,00 €
Total Price BO.00CG05981 (BTC) 80.00004198 (BTC)

Payment Address

tb1gkpyhcmbx Oy0en0svwz... rdvn tb1g3nhgaeaadcpwhmsecw... 8udm

Pay in wallet Pay in wallet

Copy Scan Copy Scan

| Awaiting payment... 9:50 | Awaiting payment... 9:51

h

Unity Services Integration
Prerequisites

Ensure Unity Services initialization and player authentication before using Crypto Game Store:

// Initialize Unity Services
await UnityServices.InitializeAsync();

// Authenticate player
await AuthenticationService.Instance.SignInAnonymouslyAsync();

Helper Class
The included UsgHelp.cs class provides utilities for Unity Services setup and authentication.

Example Implementation

A complete example is provided at Assets/GameStore/Examples/ExampleCryptoGameStoreClient.cs :

Demonstrates full integration workflow

Includes extensive documentation

Shows best practices for error handling

Provides debugging and logging examples

Product Configuration

Unity IAP Catalog Integration

Crypto Game Store uses Unity's standard product definition system with specific adaptations for cryptocurrency
pricing.
Required Product Information

For each store item, define:

1. 1D: Unique string identifier

2. Type: Consumable, Non-consumable, or Subscription (not currently support)
3. Price: Numerical price value

4. Currency ISO: Price's 3 letter currency code (USD, EUR, JPY, BTC, etc.)

Configuration Methods

Method 1: IAP Catalog (Recommended)

1. Navigate to Services — In-App Purchasing — IAP Catalog...

2. Add products with the following mappings:
ID — Catalog item /D

o

o

Title — Catalog item Title

o

Description — Catalog item Description

[e]

Price — Google Configuration: Price

o

Currency ISO — Google Configuration: Pricing Template
Method 2: Runtime PayoutDefinition
For dynamic product configuration use PayoutDefinition :
var productDefinition = new ProductDefinition(
id: "item_ 001",

type: ProductType.Consumable,
payouts: new[]

{
new PayoutDefinition(
type: PayoutType.Currency,
subtype: "USD",
quantity: 9.99m
)
}

)5

PayoutDefinition field mappings:

e Price —» quantity field

e Currency ISO — subtype field
e Insure type is setto PayoutType.Currency
Pricing Best Practices

1. Consistency: Use a single currency across all your store items when possible
2. Clarity: Clearly indicate currency to players
3. Exchange Rates: Account for real-time rate fluctuations
4. Testing: Verify pricing accuracy in test environment
Catalog File Location
Unity saves the IAP Catalog to Assets/Resources/IAPProductCatalog.json . Keep this file in the default location for

proper IAP Catalog window functionality.

Bitcoin Configuration

Confirmations

The bitcoin network secures your store's purchases by adding them to its blockchain. The longer you wait after
adding a purchase to the blockchain, the more secure that purchase will be.

By default, Crypto Game Store wait for one security cycle, a single confirmation, to occur before reporting to your
store that a purchase is complete. This should be sufficient for purchases under $100 or thereabouts. If you store sells
items for amounts larger than this, you may want to consider increasing the number of confirmations needed to
report a purchase complete.

You can use change the confirmations waited in the Unity Inspector of the BTC Network Provider using the
Confirmation For Paid setting. On average each confirmation will take approximately 10 minutes.

Testing Your Store

Test Network Setup
Use Bitcoin's testnet4 for safe testing without real Bitcoin:

1. Configure Server: Enable "Use Test Network" in Game Store Server configuration

2. Wallet Configuration:
o Knots: Automatically uses testnet4 when enabled in Game Store Server configuration

o Watch-Only: Export testnet4 XPUB (starts with "tpub..." or "vpub...")

3. Save and Restart: Apply test configuration to server

Obtaining Test Bitcoin
Testnet4 Faucets
Request free testnet4 Bitcoin from these faucets:

e mempool.space testnet4 faucet

https://mempool.space/testnet4/faucet

e coinfaucet.eu testnet4

Testnet4 Address Format

Testnet4 addresses begin with "tb1..." prefix.

Testing Considerations

e Transaction Time: Testnet4 transactions may take 1+ hours to confirm (vs 10 minutes on mainnet)

e Network Reliability: Test network may experience longer delays

Development Testing Features

Since testnet4 is often considerably slower than mainnet, fake confirmation can be sent for rapid development

G, Btc Network Provider (Btc Network Provider) P

Open

Checkout

irmation For Paid

Confirmation Minutes 120

testing:

1. Navigate to Assets/GameStore/Resources/PaymentNetworks/BtcNetworkProvider
2. Enable Fake Confirmations option
3. Behavior: Generates fake confirmation 30 seconds after a transaction starts

4. Limitations:
o Only works with DEBUG builds
o Only works on testnet4 network
o Bypasses actual blockchain monitoring
5. Features:
o Fake Adjustment: Test over/under payment scenarios. 0 = pay exact invoice amount; -1 = under pay invoice
by 10%; 1 = over pay invoice by 10%

o Status: Simulate success/failure conditions

Production Testing Checklist

Before deploying to mainnet:

1. Test Network Validation: Complete testing on testnet4

https://coinfaucet.eu/en/btc-testnet4/

2. Server Configuration: Verify mainnet wallet configuration

3. Exchange Rates: Confirm real-time price feeds

4. Security Review: Validate server and wallet security

5. Backup Procedures: Ensure wallet backup and recovery processes

6. Monitoring Setup: Implement production monitoring and alerting

Troubleshooting

"Cannot contact store; retry later”

Possible Causes:

Game Store Server is not running

Project ID mismatch between server and game

Environment ID mismatch between server and game

Network connectivity issues
Resolution Steps:

1. Verify server is running and accessible
2. Confirm Project ID matches in both server config and game

3. Verify Environment ID of server matches editor or built game environment (found in Editor Project Setting —
Services — Environments — Environment)

4. Check network connectivity and firewall settings

Server Startup AuthorizationException

Possible Causes:

e Incorrect Project ID in server configuration
e Service Account keys don't match selected project

e |Insufficient Service Account permissions
Resolution Steps:

1. Verify Project ID matches the project used for Service Account creation
2. Confirm Service Account has "Cloud Save Editor" role
3. Regenerate Service Account keys if necessary

4. Verify APl Key and Secret are correctly entered

Wallet Configuration Issues

Watch-Only Wallet:

o Verify XPUB format matches network type (mainnet vs. testnet4)
e Confirm XPUB is valid and properly exported

e Check wallet software documentation for export procedures

Knots Wallet:

Verify Knots installation in default directory

Confirm RPC server is enabled in Knots settings

Check Knots wallet creation and configuration

Review Knots logs for startup errors

Payment Processing Problems

Transaction Not Detected:

Verify payment sent to correct address

Check sufficient network confirmations

Confirm correct network (mainnet vs. testnet4)

Review blockchain explorer for transaction status
Incorrect Payment Amount:

e Verify exchange rate calculation
e Check for network fee deductions

e Confirm payment precision and rounding

Debugging Tools

Server Logging

e Enable verbose logging in Game Store Server for detailed operation information.
e Monitor Unity console for Crypto Game Store debug messages and errors.

e Monitor Game Store Server console for errors.

Blockchain Explorers
e Mainnet: blockstream.info

e Testnet4: mempool.space/testnet4

Support Resources

Exchange Rate Information

Real-time cryptocurrency prices provided by CoinGecko.

Additional Documentation

e Unity In-App Purchasing documentation
e Bitcoin Knots setup guides

e Wallet-specific XPUB export guides

https://blockstream.info/
https://mempool.space/testnet4
https://www.coingecko.com/

Glossary

Blockchain Terms
Bitcoin (BTC) : The first and most widely used cryptocurrency, operating on a decentralized blockchain network.

Blockchain : A distributed ledger technology that records transactions across multiple computers in a tamper-
resistant manner.

Confirmations : The number of blocks mined on the blockchain after a purchase's block, indicating increasing security
and finality.

Faucet : A website that distributes small amounts of test cryptocurrency for development and testing purposes.
Mainnet : The primary Bitcoin network where transactions use real Bitcoin with monetary value.

Private Key : A cryptographic key that allows spending of Bitcoin from a wallet address. Must be kept secret and
secure.

Public Key : A cryptographic key derived from a private key that can be shared publicly without compromising wallet
security.

Testnet4 : Bitcoin's test network for development and testing, using test Bitcoin with no monetary value.

Transaction Fee : A fee paid to Bitcoin miners for including a transaction in a block.

Wallet Terms

Extended Public Key (XPUB) : A public key that can generate multiple Bitcoin addresses for receiving funds without
exposing private keys.

Hardware Wallet : A physical device that stores private keys offline for enhanced security.

Hot Wallet : A wallet connected to the internet, allowing both sending and receiving of cryptocurrency.

Knots : A Bitcoin full node implementation that validates transactions and maintains the blockchain.
Non-Custodial Wallet : A wallet where the user controls their own private keys.

QR Code : A matrix barcode containing payment information that can be scanned by mobile wallet applications.

Watch-Only Wallet : A wallet that can monitor addresses and generate receiving addresses but cannot spend funds.

Unity and Development Terms

Environment ID : A Unity Services identifier that separates different deployment environments (development, staging,
production).

In-App Purchasing (IAP) : Unity's system for handling purchases within games and applications.
Project ID : A unique identifier for a Unity project within Unity Services.

Service Account : A special account used for server-to-server communication with Unity Services APIs.

Unity Services : Cloud-based services provided by Unity, including Authentication, Cloud Save, and Analytics.

Crypto Game Store Terms

Fake Confirmations : A development feature that simulates transaction confirmations for testing without waiting for
blockchain confirmation.

Game Store Server : The self-hosted server component that manages wallet interactions.
Payment Address : A unique Bitcoin address generated for each transaction to receive customer payments.
Payout Definition : A Unity IAP structure defining the currency and amount for a product purchase.

Server Locking : A mechanism preventing multiple Game Store Server instances from running with the same
configuration simultaneously.

This documentation covers the complete setup and operation of the Crypto Game Store system. For additional support or
updates, refer to the latest version of this documentation and the provided example implementations.

